Методы статистического анализа

Методы статистического анализа данных в экономике

Исходная научная база для вероятностно-статистических моделей — прикладная статистика. Она включает в себя прикладную математическую статистику, ее программное обеспечение и методы сбора статистических данных и интерпретации результатов расчетов.

[contents]

Как известно, эконометрика (или эконометрия) — это статистические методы анализа эмпирических экономических данных.

Наиболее популярные методы статистического анализа

[ads_top]

Наибольшее применение в задачах принятия решений получили следующие методы:

  • регрессионный анализ (методы восстановления зависимости и построения моделей, прежде всего линейных);
  • планирование эксперимента;
  • методы классификации (дискриминантный анализ, кластерный анализ, распознавание образов, систематика и типология, теория группировок);
  • многомерный статистический анализ экономической информации (анализ главных компонент и факторный анализ);
  • методы анализа и прогнозирования временных рядов;
  • теория робастности, т.е. устойчивости статистических процедур к допустимым отклонениям исходных данных и предпосылок модели;
  • теория индексов, в частности, индекса инфляции.

Наиболее популярны регрессионные уравнения и их системы. Обычно используют уравнения не выше второго порядка, линейные по параметрам:

где,

  • Yi  — переменная отклика;
  • xij — факторы, от которых зависит ;
  • Bi — коэффициенты, которые характеризуют взаимодействие между  и ;
  • Bif — отражают взаимодействие между  и ;
  • ei- ошибка модели;
  • i – номер наблюдения (измерения, опыта, анализа, испытания), i= 1, 2,   , n;
  • j – номер фактора (независимой переменной), j = 1,2,…, k.
  • Коэффициенты Bi, Bif  находятся методом наименьших квадратов.

Применение вероятностно-статистического описания

[ads_body]

Традиционное вероятностно-статистическое описание с интуитивной точки зрения применимо лишь к массовым событиям. Для единичных событий целесообразно применять теорию субъективных вероятностей и теорию нечетких множеств (fuzzy sets). которая развивалась ее основателем Л.Заде для описания суждений человека, для которого переход от «принадлежности» к множеству к «непринадлежности» не скачкообразен, а непрерывен.

Статистика нечисловых данных, или нечисловая статистика

Статистика нечисловых данных, или нечисловая статистика
Статистика нечисловых данных, или нечисловая статистика

В последнее время можно заметить, что область статистических методов приобретает всё больший вес в системном анализе. Эта область посвящена анализу статистических данных нечисловой природы (её ещё называют статистикой нечисловых данных, или нечисловой статистикой). Выборка — это исходный объект в прикладной статистике, который означает совокупность одинаково распределенных случайных элементов, которые также являются независимыми между собой.

Необходимо различать выборку в математической статистике (выборка — это числа) и многомерном статистическом анализе (выборка — это вектора). Также стоит отметить, что в нечисловой статистике элементы выборки — это объекты нечисловой природы (нельзя складывать и умножать на числа). То есть, объекты нечисловой природы лежат в пространствах, которые не имеют векторную структуру.

Читайте по теме: Закон больших чисел. Центральная предельная теорема. Интервальная оценка

Примеры объектов нечисловой природы являются:

  • значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);
  • упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);
  • классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);
  • толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;
  • результаты парных сравнений или контроля качества продукции по альтернативному признаку («годен» — «брак»), т.е. последовательности из 0 и 1;
  • множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;
  • слова, предложения, тексты;
  • вектора, координаты которых — совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть — количественный;
  • ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.

Одно из основных применений статистики объектов нечисловой природы — теория и практика экспертных оценок, связанные с теорией статистических решений и проблемами голосования.

Интервальная статистика

analitika-2014
Интервальная статистика

В 1980-е годы стала развиваться интервальная статистика — часть статистики нечетких данных, в которой функция принадлежности, описывающая размытость, принимает значение 1 на некотором интервале, а вне его — значение 0. Другими словами, исходные данные, в том числе элементы выборки — не числа, а интервалы.

Интервальная статистика тем самым связана с интервальной математикой, в частности, с интервальной оптимизацией. Интервальная статистика — это анализ интервальных статистических данных. В ней предполагается, что исходные данные — это не числа, а интервалы. Интервальную статистику можно рассматривать как часть интервальной математики.

Непараметрическая статистика

Непараметрическая статистика
Непараметрическая статистика

Непараметрическая статистика позволяет делать статистические выводы, оценивать характеристики распределения, проверять статистические гипотезы без слабо обоснованных предположений о том, что функция распределения элементов выборки входит в то или иное параметрическое семейство. Например, широко распространена вера в то, что статистические данные часто подчиняются нормальному распределению.

Математики думают, что это — экспериментальный факт, установленный в прикладных исследованиях. Прикладники уверены, что математики доказали нормальность результатов наблюдений. Между тем анализ конкретных результатов наблюдений, в частности, погрешностей измерений, приводит всегда к одному и тому же выводу — в подавляющем большинстве случаев реальные распределения существенно отличаются от нормальных.

Некритическое использование гипотезы нормальности часто приводит к значительным ошибкам, например, при отбраковке резко выделяющихся результатов наблюдений (выбросов), при статистическом контроле качества и в других случаях. Поэтому целесообразно использовать непараметрические методы, в которых на функции распределения результатов наблюдений наложены лишь весьма слабые требования. Обычно предполагается лишь их непрерывность. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг задач, что ранее решался параметрическими методами.

Основная идея работ по робастности, или устойчивости, состоит в том, что выводы, полученные на основе математических методов исследования, должны мало меняться при небольших изменениях исходных данных и отклонениях от предпосылок модели. Здесь есть два круга задач. Один — это изучение устойчивости распространенных алгоритмов анализа данных. Второй — поиск робастных алгоритмов для решения тех или иных задач.


(Оценок: 2, в среднем: 10,00 из 10)
Loading...Loading...